CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC) NORTHERN ZONE JOINT EXAMINATIONS SYNDICATE (NZ-JES)

FORM FOUR PRE – NATIONAL EXAMINATION AUGUST 2025

PHYSICS 2B

MARKING SCHEME

e) Table of results (SAMPLE A EXAM)

h (cm)	t (s) 10 (±1)oscillation	T (s) (±1)	T (s ²) (±1)
10	19.03	1.90	3.60
20	17.94	1.8	3.20
30	16.78	1.67	2.80
40	15.54	1.55	2.40
50	14.18	1.42	2.00
60	12.69	1.27	1.60

 $\frac{1@\text{mark for } t = 05}{}$

1@ mar for T²=05

(10 Mark)

a) The graph of T^2 against h is on the graph paper at the back pages

The graph will be plotted by using the equation

$$H=rac{T^2g+4\pi^2h}{4\pi^2}$$
 (01 mark)
$$4\pi^2H=T^2g\ +\ 4\pi^2h$$
 $T^2g\ = -\ 4\pi^2h+4\pi^2H$

$$T^2 = \frac{-4\pi^2}{g}h + \frac{4\pi^2}{g}H$$
 (01 mark)

:. The graph will have negative slope and positive y-intercept.

i. From the graph, slope is given by

$$S = \frac{\Delta T^2(s^2)}{\Delta h (cm)}$$
 (0.5 Mark)

$$S = \frac{2.6 - 1.2}{27 - 66} \tag{0.5 Mark}$$

$$S = - \frac{1.4 \ (s^2)}{39 \ (cm)}$$

$$S = -0.036 \, s^2 / cm$$

$$\therefore \text{ The slope of the graph is } S = -0.040 \text{ } S^2/_{cm} \qquad (01 \text{ Mark})$$

- ii. From the graph; the value of h-intercept is 100 cm (01 Mark)
- iii. The value of h-intercept represents the **length of the string** (01 Mark)
- iv. From the equation above; the value of g

$$M = \frac{-4\pi^2}{g} \tag{0.5 Mark}$$

$$g = \frac{-4\pi^2}{M} = \frac{-4\pi^2}{-0.04}$$

$$g = 986.96 \ cm/s^2$$

$$\therefore \text{ The value of } g = 986.96 \text{ } cm/_{S^2} \qquad (01 \text{ Mark})$$

v. Sources of error (01 Mark)

- > Air resistance affecting the pendulum swimming
- > Inaccurate measurement of time or length

QUESTION TWO

(i) Diagram for circuit (02 marks)

(ii) Table of results

$R(\Omega)$	I (A) ±0.1	$\frac{1}{I}(A^{-1})$
10	0.14	7.1
5	0.27	3.7
4	0.33	3.0
3	0.43	2.3
2	0.6	1.67

1@ mark =**05** 1@ mark =**05**

(iii) Graph

Slope =
$$\frac{\Delta 1/I}{\Delta R}$$
 (01 mark)
= $\frac{5.75-2.50}{8-3.2}$
= 0.677 Ω^{-1} A⁻¹ (2.7-3.4) (01 mark)
(v) From,
E = I(R+r) (0.5 mark)
By rearranging, we have
 $\frac{1}{I} = \frac{1}{E}(R) + \frac{r}{E}$ (0.5 mark)
By comparing with,
Y = mx + c
Slope = $\frac{1}{E}$, (0.5 mark)
but slope = 0.677 V,
Then E = 1.48 V, range (1.35-1.7 V) (0.5 mark)
Intercept of a graph = 0.33A⁻¹ (0.5 marks)
Intercept = $\frac{r}{E}$, (0.5 marks)
compare with intercept, we have r = 0.495 Ω , (0.3-0.7) (01 mark)

(vii) increasing the value of R, the brightness of a bulb decreases.

(01 mark)